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We investigate the statistics of fluctuations in a classical stochastic network of
nodes joined by connectors. The nodes carry generalized charge that may be ran-
domly transferred from one node to another. Our goal is to find the time evolution
of the probability distribution of charges in the network. The building blocks of our
theoretical approach are(1) known probability distributions for the connector cur-
rents, (2) physical constraints such as local charge conservation, and(3) a time
scale separation between the slow charge dynamics of the nodes and the fast cur-
rent fluctuations of the connectors. We integrate out fast current fluctuations and
derive a stochastic path integral representation of the evolution operator for the
slow charges. The statistics of charge fluctuations may be found from the saddle-
point approximation of the action. Once the probability distributions on the discrete
network have been studied, the continuum limit is taken to obtain a statistical field
theory. We find a correspondence between the diffusive field theory and a Langevin
equation with Gaussian noise sources, leading nevertheless to nontrivial fluctuation
statistics. To complete our theory, we demonstrate that the cascade diagrammatics,
recently introduced by Nagaev, naturally follows from the stochastic path integral.
By generalizing the principle of minimal correlations, we extend the diagrammatics
to calculate current correlation functions for an arbitrary network. One primary
application of this formalism is that of full counting statistics(FCS), the motivation
for why it was developed in the first place. We stress however, that the formalism
is suitable for general classical stochastic problems as an alternative approach to the
traditional master equation or Doi–Peliti technique. The formalism is illustrated
with several examples: Both instantaneous and time averaged charge fluctuation
statistics in a mesoscopic chaotic cavity, as well as the FCS and new results for a
generalized diffusive wire. ©2004 American Institute of Physics.
[DOI: 10.1063/1.1803927]

I. INTRODUCTION

Consider an exclusive nightclub with a long line at the entrance. A bouncer is at the front of
the line to keep out the riffraff. At every time step, a person is accepted inside the club with
probability p, or rejected with probability 1−p. Inside the club, people stay for a while and
eventually leave. At every time step, the probability a person leaves isq. We want to answer a
question such as “what is the probability thatQ people leave the club aftert time steps?”

Assuming thatp and q remain constant, the situation is simple and we can easily solve the
relevant probabilistic problem. However, in realistic situations this rarely happens: The manage-
ment wants to make money. If the club is almost empty, they instruct the bouncer to be less
discriminating, while if the club is almost full, the bouncer is to be more discriminating. Thus,p
becomes a function of the number of people in the club. People will be more likely to leave if the
club is very crowded, soq is also a function of the number of people inside the club. The problem
posed now is much more difficult because of the presence of feedback: The elementary processes
change in response to the cumulative effect of what they have accomplished in the past.
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This simple example captures all the basic features of the problems we wish to consider.
Although the example was given with people, the actors in the probability game may be any
quantity such as charge, energy, heat, or particles, which we will refer to simply as generalized
charge. Similarly, the nightclub can be a mesoscopic chaotic cavity,1 a birth-death process,2 a
biological membrane channel,3 etc.

Historically, general stochastic problems are solved with the master equation. The time rate of
change of the probability to be in a particular state is given in terms of transition rates to other
states. This approach has had great success and leads naturally to the Fokker–Planck and Langevin
equations.4 However, once the master equation is given, the solution is often quite difficult to
obtain.

This paper takes a different approach. Rather than beginning with a master equation describ-
ing the probability of all processes happening in a unit of time, we make several assumptions from
which we can reformulate the problem. Although these assumptions limit the applicability of the
theory, when they apply, the problems are much easier to solve. The assumptions are:

• The system we are interested in is a composite system made out of constituent parts. In the
nightclub example, the system is made up of three physical regions: Outside the front door,
the interior of the club, and outside the back door. The decomposition of a larger system into
smaller interacting parts is only meaningful for us if there is a separation of time scales. This
means that the charge inside the constituent parts changes on a slower time scale than the
fluctuations at the boundaries. In the nightclub example, this simply means that the average
time a person spends in the club will be much longer than the typical time needed to enter the
door.

• Taken alone, the parts of the composite system have a finite number of simple properties or
parameters. The only property of the nightclub that was relevant for the problem was the total
number of people in it at any given time. The important element of the line out in front is that
it never runs out. All other details are irrelevant.

• In the limit where all parts of the network are very large(so that the elementary transport
processes do not affect themselves in the short run), the transport probability distributions
between elements are known. In the nightclub example, the probability of gettingQ people
through the front door aftert time steps(given a constant, large number of people inside) is
easy to find, because we have assumed that the elementary probabilityp does not change
from trial to trial. The transport probability distribution is simply the binomial distribution4

where the probabilityp is a function of the(approximately unchanging) number of people
inside. The back door distribution is obtained in the same way.

• There are conservation laws that govern the probabilistic processes. No matter what prob-
ability distributions we have, there are certain rules that must be obeyed. The net number of
people that enter, stay, and leave the club must be a constant. This means that the time rate
of change of the club’s occupancy is given by the people-current in minus the people-current
out. The people in the line outside are a special case. There is in principle always a replace-
ment, so moving one person inside the club does not affect the properties of the line.

Now, the strategy is to use this information as the starting point to find transport statistics for
the combined interacting system. The main result derived is a path integral expression for the
conditional probability(taking conservation laws into account) for starting and ending with a
given amount of charge at each location after some time has passed. From this conditional prob-
ability, specific quantities such as transport statistics through the system, fluctuation statistics of
charge at a particular location and the like may be found.

One primary application of this formalism is that of full counting statistics(FCS),5,6 the
motivation for why it was developed in the first place.7 FCS describes the fluctuations of currents
in electrical conductors. It gives the distribution of the probability that a certain number of
electrons pass a conductor in a certain amount of time. Mean current flow and shot noise1 corre-
spond to the first and second cumulant of this distribution. The full distribution(defined by all
cumulants) provides a full characterization of the transport properties of an electrical conductor in
the long time limit. In the past, FCS was mainly addressed with quantum mechanical tools such as
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the scattering theory5,6,8,9 of coherent conductors, the circuit theory based on Keldysh Green
functions,10–13 or the nonlinears model.14 However, a number of works realized that for semi-
classical systems with a large number of conductance channels, shot noise may be calculated
without accounting for the phase coherence of the electron.15–18 These works treat the basic
sources of noise quantum mechanically, but calculate the spread of the noise throughout the
conductor classically. For specific conductors like diffusive wires and chaotic cavities, this idea
has been extended to the calculation of third and fourth cumulants via the cascade principle19,20

and to the full generating function of FCS.7,21–23 In the present work, we consider an abstract
model instead of any particular example and develop the mathematical foundations of the pro-
posed semi-classical procedure to obtain FCS. We introduce and investigate networks of elements
with known transport statistics and show how the FCS of the entire network can be constructed
systematically.

The formalism we present is related to a different approach in nonequilibrium statistical
physics called the Doi–Peliti technique.24 The idea is that once the basic master equation govern-
ing the time evolution of probability distributions is given, it may be interpreted as a Schrödinger
equation which may be cast into a second-quantized language. This quantum problem is then
converted into a quantum mechanical path integral(often obeying bosonic or fermionic statistics)
from which one may take the continuum limit and use a field theory renormalization group
approach with diagrammatic perturbation expansion.25 This approach is useful in many situations
far from equilibrium and has several parallels to our approach. It has been pointed out that this
technique is in some sense the classical limit of the quantum mechanical Keldysh formalism,26 the
same tool used in the past to calculate FCS, so this gives another connection with the subject
matter we are concerned with.

There are several advantages of our approach. First, we skip the master equation step. If the
probability distributions of the connector fluctuations are given, we may immediately construct
network distributions. Second, from a computational view, our formulation of the problem is much
simpler than starting from first principles for situations where the ingredients we need are avail-
able, and results are much easier to obtain than beginning with the master equation alone. Thirdly,
our formulation also applies to situations where temporal transition probabilities may be large.
Finally, the formalism’s physical origin is clear, so the needed mathematical objects are well
motivated.

The rest of the paper is organized as follows. In Sec. II, we introduce and develop the general
theory. After reviewing elements of probability theory, we derive the stochastic path integral for a
network of nodes as well as explore the relationship to the master equation and Doi–Peliti for-
malism. In Sec. III, the continuum limit is taken to derive a stochastic field theory and link our
formalism with the Langevin equation point of view. In Sec. IV, we develop diagrammatics rules
to calculate cumulants of the current distribution as well as current correlation functions for an
arbitrary network. Section V gives several applications of the theory to different physical situa-
tions. We solve the field theory for the mesoscopic wire and demonstrate universality in multiple
dimensions as well as present new results for the conditional occupation function and probability
distribution. We also consider the problem of charge fluctuation statistics(both instantaneous and
time-averaged) in a mesoscopic chaotic cavity. Section VI contains our conclusions.

II. GENERAL FORMALISM

Once we have the basic elements of our theory(the generalized charges), we must specify
some spatial structure that they move around on. As we noted in the introduction, the essential
structure needed to state the problem are simply points we refer to as nodes, joined by connectors.
This defines a network(see Fig. 1). The state of each nodea is described by one(effectively
continuous) chargeQa,27 andQ is the charge vector describing the charge state of the network.
The node’s state may be changed by transport: Flow of charges between nodes takes place via the
connectors carrying currentsIab from nodea to nodeb. The variation of these chargesQa is given
by
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Qast + Dtd − Qastd = o
b

Qab, s1d

where the transmitted chargesQabstd=e0
Dtdt8Iabst+ t8d are distributed according toPabsQabstdd.

The fact that the probabilitiesPabstd also depend on the chargesQstd is one source of the difficulty
of the problem.

Assuming that the probability distributionsPab (which depend parametrically on the state of
nodesa andb) of the transmitted chargesQab are known, we seek the time evolved probability
distributionGsQ ,td of the set of chargesQ for a given initial distributionGsQ ,0d. In other words,
one has to find the conditional probability(which we refer to as the evolution operator)
UsQ ,Q8 ,td such that

GsQ,td =E dQ8UsQ,Q8,tdGsQ8,0d. s2d

We assume that there is a separation of time scales,t0!tC, between the correlation time of current
fluctuations,t0, and the slow relaxation time of charges in the nodes,tC. As we will show in the
next section, this separation of time scales allows us to derive a stochastic path integral represen-
tation for the evolution operator,

UsQ f,Qi,td =E DQDL exphSsQ,Ldj, s3ad

SsQ,Ld =E
0

t

dt8F− iL · Q̇ + s1/2do
ab

HabsQ,la − lbdG , s3bd

where the vectorL has componentsla: Node variables conjugated to theQa that impose charge
conservation in the network.

In the following, we define the functionsHab as the generating functions of the fast currents
between nodesa and b. On the time scaleDt@t0, the currents through isolated connectors are
Markovian, so that all cumulants(irreducible correlators which are denoted by double angle
brackets) of the transmitted chargekksQabdnll are linear inDt. Following the standard notation in

mesoscopic physics,28 we define the current cumulantskksĨabdnll as the coefficients in

kksQabdnll = DtkksĨabdnll, s4d

where the tilde symbol has been introduced to distinguish the bare currents of each connector(the
sources of noise) from the physical currentsIab flowing through that same connector when it is
placed into the network. Then the generatorsHab are defined via the equation

FIG. 1. An arbitrary network. Each node has charge and counting variableshQa ,Laj. The nodes transfer charge via
currentsIab through the connectors. The absorbed counting fieldssLa

ad are constants by definition of the absorbed charges
Qa

a (see text). Each node may have an arbitrary number of different charge species,Qa=hQa
1 ,Qa

2 , . . . ,Qa
j j.
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kksĨabdnll = U ]nHabsQ,labd
si ] labdn U

lab=0
, s5d

and thus contain complete information about the statistics of the noise sources. Thelab [eventu-

ally to be replaced with withla−lb in Eq. (3)] is the generating variable for the currentĨab. The
notion of current cumulants is useful because they are the time independent objects, and thus have
time independent generators, Eq.(5). The generatorsHabsQ ,labd depend in general on the full
vectorQ and not just on the generalized charges of the neighboring nodesQa andQb. This may
serve to incorporate long range interactions between distant nodes.

The chargeQab transferred through the connectors[characterized by Eqs.(4) and(5)] may be
discrete. However, the charge in the nodesQa is treated as an effectively continuous variable in
Eqs.(1)–(3). This is justified if many charges in the node participate in transport. Formally, this
limit allows a saddle-point evaluation of the propagator(3a).

A. Derivation of the path integral

To derive the path integral Eq.(3), we follow the usual procedure29 and first discretize time,
t=nDt to derive an expression forU that is valid for propagation over one time stepDt. Because
of the separation of time scalest0!tC, we can considerDt as an intermediate time scale,

t0 ! Dt ! tC. s6d

The left inequality,t0!Dt, implies that the transmitted chargesQab are Markovian.4 This means
that charges transmitted in separate time intervals are uncorrelated with each other. While it is not
necessary to specify the source of the current correlation in the general formulation, it is worth
noting two examples. In a mesoscopic point contact, the correlation timet0 has the interpretation
of the time taken by an electron wavepacket to pass the point contact. In chemical dynamics, it
could be the time taken for a long molecule in solution to traverse a filter.

In a time Dt, the probability that chargeQab is transmitted between nodesa and b can be
written as the Fourier transform of the exponential of a generating functionSab:

PabsQab,Dtd =E dlab

2p
exph− ilabQab + Sabslabdj. s7d

The definition of the cumulant of transmitted charge is

kksQabdnll = U ]nSabslabd
si ] labdn U

lab=0
. s8d

The Markovian assumption implies that the probability of transmitting chargeQab in time Dt
followed by chargeQab8 in time Dt8 through any connector is given by the product of independent
probability distributions. This implies that the probability of transmitting chargeQab in time Dt
+Dt8 may be calculated by finding all ways of independently transferring chargeQab8 in the first
step andQab−Qab8 in the second step,

PsQab,Dt + Dt8d =E dQab8 PsQab − Qab8 ,Dt8dPsQab8 ,Dtd, s9d

which takes the form of a convolution of probabilities. Applying a Fourier transform to both sides
of Eq. (9) with argumentlab decouples the convolution into a product of the two Fourier trans-
formed distributions. Equation(7) impliesSabsDt+Dt8 ,labd=SabsDt ,labd+SabsDt8 ,labd. It then
immediately follows that the generating function must be linear in time. Therefore, a time inde-
pendentHab may be introduced:Sab=Dt Hab. The linear dependence ofSab on time implies that
all charge cumulants(8) will be proportional to time. Therefore, we define the time independent
current cumulants, Eq.(5).
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Different connectors are clearly uncorrelated forDt!tC, which indicates that the total prob-
ability distribution of transmitted charges is a product of the independent probabilities in each
connector:30

PfhQabjg = p
a.b

PabfQab,Dtg. s10d

Thus far, the analysis is only valid for times much smaller thantC. For this case, the charges in the
nodes will only slightly change. Since we wish to consider longer times, we need to take into
account the fact that charge transfer between different nodes will be correlated as charge piles up
inside the nodes. This may be accounted for by imposing charge conservation Eq.(1) during the
time interval with a delta function,

dSQa − Qa8 − o
b

QabD =E dla

2p
expH− ilaFQa − Qa8 − o

b

QabGJ . s11d

Here,Qa8 is the charge in the node before the time interval whileQa is the charge accumulated in
the node after the time interval is over. In Eq.(11), la (referred to as acounting variable) plays
the role of a Lagrange multiplier. The propagator is obtained by multiplying the constraint(11) and
the independent probability distribution(10). Representing the probabilities in their Fourier form
(7) then yields

ŨsQ,Q8,Qab,Dtd = p
a
E dla

2p
p
a.b
E dlab

2p
expsSd,

S= − io
a

laSQa − Qa8 − o
b

QabD + o
a.b

f− ilabQab + DtHabsQ8,labdg. s12d

The full propagatorŨsQ ,Q8 ,Qab ,Dtd still keeps track of each individual connector contribution
Qab. We now integrate out the fast fluctuations to obtain the dynamics of the slow variables. This
may be done by using the identityoa laob Qab=oa.bslaQab+lbQbad and Qab=−Qba. The
integration overQab gives a delta function of argumentlab−sla−lbd, so that thelab integrals
may be trivially done. We obtain

UsQ,Q8,Dtd = p
a
E dla

2p
expH− io

a

lasQa − Qa8d + Dto
a.b

HabsQ8,la − lbdJ . s13d

This is the general result for the one step propagator. If any two nodes are unconnected,Hab is
zero.

An important comment is in order: BecauseHab changes slightly over the time period, which
in turn affects the probability of transmitting charge through the contacts, it is not clear at what
part of the time stepHab should be evaluated. This ambiguity exists because our theory is not
microscopic. Rather, it takes the microscopic noise generators as an input. This ambiguity gives
the freedom of stochastic quantization.31 The same problem also occurs in quantum mechanical
path integrals, and its source there is an ambiguity in operator ordering.32 As we are interested in
the large transporting charge limit,g@1, and evaluate the integrals in leading order saddle-point
approximation, this ambiguity will not affect the results.7 For calculations beyond the large trans-
porting charge limit, the canonical variablesQ andL need to be properly ordered, which can only
be done with a microscopic theory. For example, the master equation discretized in time as
discussed in Sec. II D requires the placement ofL operators in front ofQ operators, since the
generating functionsHab of the transition probabilities depend on the state of the system at the
beginning of the time period.

To extend the propagator(13) to longer timest=nDt, we use the composition property of the
evolution operator(also known as the Chapman–Kolmogorov equation4). This requires separate
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hQaj integrals at each time step, so that forn time steps there will ben−1 integrals overQ, while
each of then one-step propagators comes with its ownL integral,L=hlaj. Inserting our expres-
sion for theDt step propagator Eq.(13), we find

UsQ f,Qi,td =E dL0p
k=1

n−1E dQkdLk expFo
k=0

n−1

− iLk · sQk+1 − Qkd + DtHsQk,LkdG , s14ad

with

HsQk,Lkd = o
a.b

HabfQa,k;la,k − lb,kg, s14bd

where we have introduced the notationsdQk=pa dQa,k anddLk=pasdla,k/2pd. We are now in a

position to take the continuous time limit. WritingQk+1−Qk=DtQ̇, which is valid because the
charge in any node changes only slightly over the time scaleDt, the action of this discrete path
integral has the formS=Dtok=1

n Sk, which goes over into a time integral in the continuous limit.
Using the standard path integral notationeDQDL=edL0pk=1

n−1edQkdLk, and invoking the sym-
metry Habsla−lbd=Hbaslb−lad we recover Eq.(3). The only explicit constraint on the path
integral comes with the charge configurations at the start and finish,Qi andQ f. We also note that
Hab depends on any external parameters such as voltages or chemical potentials driving the charge
Q.

In the simplest case of one charge and counting variable, the form of the path integral is the
same as the(Euclidian time) path integral representation of a quantum mechanical propagator in
phase space with position coordinateQ and momentum coordinatel.32 The differences with the
quantum version are that the propagator evolves probability distributions, not amplitudes(simi-
larly to Ref. 25), as well as the fact that the “Hamiltonian”H=s1/2doabHabsQ ,la−lbd is not
really a Hamiltonian, but rather a current cumulant generating function and, therefore, is not
Hermitian in general. Even so, because of the similarity we shall refer toH as the Hamiltonian
from now on.

B. Absorbed charges, boundary conditions, and correlation functions

A useful special case occurs when one has absorbed charges. These are charges that vanish
into (or are injected from) absorbing nodes without altering the system dynamics. In mesoscopics,
for example, the absorbing nodes are metallic reservoirs. Formally, we divide the charges into
those that are conserved and those that are absorbed:Q=hQc,Qaj, where the subset of absorbed
chargesQa=hQa

aj does not appear inHab. We do the same for the corresponding counting vari-
ables:L=hLc,Laj. BecauseHab does not depend onQa, these charges may be integrated out by
integrating the action by parts,

iE
0

t

dt8La · Q̇a = − iE
0

t

dt8Qa · L̇a + isL f
a ·Q f

a − Li
a ·Qi

ad, s15d

and then functionally integrating overQa to obtaindsL̇ad, whered is a functional delta function.
This immediately constrains theLa to be constants of motion so the functional integration overLa

becomes a normal integration,DLa→dLa. The absorbed kinetic terms in the action may then be
integrated to obtain

UsQ f,Qi,td =E dLaE DQcDLcexphSsQ,Ldj, s16ad

SsQ,Ld =E
0

t

dt8F− iLc · Q̇c + s1/2do
ab

Habsla − lbdG − iLa · sQ f
a − Qi

ad. s16bd
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Often one is interested in the probability to transmit some amount of charge through each of
the absorbing nodes. By applying a Fourier transform to Eq.(16a) with respect toQastd−Qas0d we
remove the last term in Eq.(16b) and obtain the path integral representation for the characteristic
function Z which generates current moments at every absorbing node

ZsLad =E DQcDLc exphSsQ,Ldj, s17ad

SsQ,Ld =E
0

t

dt8F− iLc · Q̇c + s1/2do
ab

Habsla − lbdG . s17bd

Note that the counting variablesLa enter the action(17b) only as a set of constant parameters. The
initial condition in the path integral(17) is given by the initial charge statesQcs0d. There is a
choice of the final condition: By fixing the finalQcstd one obtains the distribution of the conserved
charge subject to this constraint, while by fixingLcstd the corresponding characteristic function is
obtained. The choice ofLcstd=0 in Eq. (17) gives the characteristic function of the absorbed
charge under the condition that the conserved charge is not being monitored, i.e., the final charge
state is integrated over. Therefore, lnZ becomes the generator of the FCS, defining the charge
cumulants at the absorbing node,

kkfQa
astd − Qa

as0dgnll = U ]n ln Z

s] ila
adnU

La=0

. s18d

In the long time limit, this quantity is proportional to time, independent of the details of the
boundary conditions.

Alternatively, in the short time limit one may calculate irreducible correlation functions of

absorbed and conserved current fluctuations,I =Q̇. These correlation functions can be obtained by
extending the time integral in(3b) to infinity, introducing sources32 in the action, S→S
+ i edt xstd ·I std, and applying functional derivatives with respect tox. Repeating the steps leading
to Eqs. (17), we find that variablesla in the Hamiltonian in Eq.(17b) have to be shiftedla

→la+xa. Then, the irreducible current correlation function is given by

kkIa1
st1d ¯ Ian

stndll = U dn ln Zfxg
dixa1

st1d ¯ dixan
stndU

x=0

. s19d

With these correlation functions, one may calculate, for example, the frequency dependence of
current cumulants.33

C. The saddle point approximation

If the Hamiltonian has some dimensionless large prefactor, then the path integral(3) may be
evaluated using the saddle point approximation, which is justified below. At the saddle point,
(where the first variation of the action vanishes), we can write equations of motion analogous to
the Hamiltonian equations of classical mechanics:

iQ̇c =
]

] LcHsQc,Ld, iL̇c = −
]

] QcHsQc,Ld, s20d

whereHsQc,Ld=s1/2doabHabsQc;la−lbd. There may be many saddle point solutions in gen-
eral, and one has to sum over all of them. Equations(20) are solved subject to the temporal
boundary conditions and generally describe the relaxation of the conserved charges from the initial

state to a stationary statehQ̄c,L̄cj on a time scale given bytC, the dynamical time scale of the
nodes. These stationary coordinates are functions of any external parameters as well as the(con-
stant) absorbed counting variablesLa. In the saddle point approximation, the action takes the form
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S=Ssp+Sfluc.
7 The termSsp is the contribution to the action from the solution of the Eqs.(20),

which describes the evolution of the system from the initial to the final state. The termSfluc

describes fluctuations around the saddle point and is suppressed compared to the saddle-point
contribution, if the Hamiltonian has a large prefactor(in analogy to the"-expansion of quantum
mechanics). Physically, the validity condition for the saddle point approximation is that there
should be many(transporting) charge carriers in the nodes. For times longer than the charge
relaxation time of the node, the dominant contribution is from the stationary state only, where the
saddle-point part of the action is simply linear in time:

SspsQ̄,L̄d = tHsQ̄,L̄d, t @ tC. s21d

The linear time dependence of Eq.(21) indicates that the dynamics are Markovian on a long time
scale. It is the fact that the contributionSsp emerges in a dominant way which makes the approach
given here a powerful tool to analyze the counting statistics of transmitted charge.

We now discuss the large parameter that justifies the saddle point approximation. The bound-
ary conditions on the charge in the absorbing nodes fix a(dimensionless) charge scale of the
system,g. All charges in the network are scaled accordingly,Q→gQ. We make the assumption
that there is a one parameter scaling of the Hamiltonian,H→gH. The time is also scaled bytC,
the time scale of charge relaxation in the nodes. The dimensionless action is nowS=ge0

t/tCdt8
3s−iQ̇l+tCHd. The saddle point action is proportional togt /tC, while the fluctuation contribution
will be of order t /tC. We note that the parameterg is related to(though not necessarily the same
as) the separation of time scales,tC/t0, needed to derive the path integral. For the mesoscopic
conductors considered in the example section V B of this paper, the charge scale is set by the
maximum number of semiclassical states on the cavity involved in transport,g=DmNF@1, the
bias times the density of states at the Fermi level. On the other hand, for the chaotic cavity,
tC/t0=g / sGL+GRd, whereGL,R@1 are the dimensionless conductances of the left and right point
contact.

D. Relation to the master equation and Doi–Peliti technique

The evolution operatorUsQ ,Q8 ,td may be interpreted as a Green function of a differential
equation which determines the propagation in time of an initial probability distributionGsQd. In
the theory of stochastic processes, such a differential equation is called a master equation. A
natural question that arises is the relationship of the formalism presented here to other approaches
to stochastic problems.

The most general type of Markovian master equation for discrete states and discrete time is of
the form

Gnstk+1d = o
m

Pnmstk+1,tkdGmstkd, s22d

whereGmstkd is the probability to be in statem at timetk andPnm is the transition probability from
statem to staten. The state is described by a vectorn=sn1, . . . ,nNd whose components are the
chargesna of each nodea. The Markovian assumption implies thattk+1− tk=Dt is greater than the
correlation time,t0. If we further assume that the probability to make a transition to another state
is small,Pnm!1 for nÞm, so that the transition probability is only linear inDt, a transition rate
Wnm=Pnm/Dt may be defined. It then follows that we may write a differential master equation,

Ġnstd = o
m

fWnmGmstd − WmnGnstdg. s23d

Equation(23) is the starting point for the Doi–Peliti technique,24 where one formally maps the
space of physical states to the Fock space of statesunl=sa1

†dn1
¯saN

†dnNu0l, wheren is the number
of charges. The entire state of the system is expressed by a vectoruCl=onGnunl which weights the
statesunl with their probabilitiesGn. Thus, the master equation(23) may be interpreted as a
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many-body Schrödinger equation where the ratesWmn are incorporated into a Hamiltonian in a
second-quantized form. One may then write a coherent-state path integral over the variablesa, and
a† for this many-body quantum system and perform perturbation expansions along with the renor-
malization group.25 This procedure eventually involves taking the continuum limit so the discrete
charge states become continuous.

Let us now consider how our formalism is related to the master equation or the Doi–Peliti
technique. According to the results of Sec. II, our stochastic path integral, Eq.(3) solves the
continuum variable version of Eq.(22) with the transition probabilities given by the one step
propagatorUsQ ,Q8 ,Dtd. In general, the transition probabilities are neither small nor linear in
time for Dt.t0. It is instructive nevertheless to consider the special case of processes where
Ht0!1, when we can expand the one-step propagator(13) to first order inDt,

UsQ,Q8,Dtd < dsQ − Q8d + DtE dLe−iL·sQ−Q8dHsQ8,Ld. s24d

Defining the Fourier transform of the generating function asH̃sQ ,Q8d, the differential equation
governing the evolution of a probability distribution of chargesGsQd is then

ĠsQ,td =E dQ8H̃sQ,Q8dGsQ8,td. s25d

Comparison with the continuous version of the master equation(23),

ĠsQ,td =E dQ8fWsQ,Q8dGsQ8,td − WsQ8,QdGsQ,tdg, s26d

indicates thatH̃ is related toW. The Hamiltonian may be expressed in terms of the transition
kernel34 as,

HsQ8,Ld =E dQfeisQ−Q8d·L − 1gWsQ,Q8d, s27d

where the normalization of probability is expressed byHsQ8 ,0d=0. Equation(27) is an important
result, because it allows the conversion of the master equation(26) into the stochastic path integral
(3).

We would like to stress that our formalism is not simply equivalent to the differential master
equation(26) (and, therefore, the Doi–Peliti technique), but that it allows the treatment of a
complementary class of problems. Our formalism assumes effectively continuous charge, and thus
cannot resolve effects due to the discreteness of charge on the nodes. Such effects are present in
the master equation(23). In contrast, the differential master equation assumption,Ht0!1 (which
simply states that transition probabilities are small in the time intervalt0) is not required. Our
formalism is especially important when this is not the case, i.e.,Ht0,1.

This is illustrated by the simple example from mesoscopics of two metallic reservoirs con-
nected by a single electron barrier with hopping probabilityp and biasDm at zero temperature. For
a time intervalDt larger than the correlation timet0=" /Dm (the time scale for an electron
wavepacket to transverse the barrier), Dt /t0 electrons approach the barrier and either are trans-
mitted or reflected. Mathematically, this is a classical binomial process with the generator

S= sDt/t0dlnf1 + pseiel − 1dg. s28d

As this action is the starting point of many mesoscopic implementations of the formalism, it is an
important example. Since the action is proportional to the large parameterDt /t0.1, for p,1 the
expansion of expsSd to first order inDt is strictly forbidden, effectively not allowing a first order
differential master equation. Only in the limitp!1, (i.e., when Eq.(28) describes a Poissonian
process) may the logarithm be expanded to first order. This suggests that Eq.(26) describes the
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slow dynamics of systems whose fast transitions are Poissonian in nature. A more general type of
dynamics such as the binomial distribution may only be found using the continuous charge state
master equation in discrete time(22).

III. THE FIELD THEORY

From the stochastic network, Fig. 1, it is straightforward to go to spatially continuous systems
as the spacing between the nodes is taken to zero. The goal is to introduce a Hamiltonian func-
tional hsr ,ld whose arguments are the charge densityr and the counting field functionsl, that are
themselves functions of space and time. We may then replaces1/2doa,bHa,b→edzhsr ,ld. Our
description is local, so in the model each node is only connected to its nearest neighbors. We first
derive the one-dimensional field theory with one charge species in detail, and then generalize to
multiple dimensions and charge species.

Consider a series of identical, equidistant nodes separated by a distanceDz. This nodal chain
could represent a chain of chaotic cavities, Fig. 2, in a mesoscopic context.35,36 The sum overa
and b becomes a sum over each node in space connected to its neighbors. The action for this
arrangement is

S=E
0

t

dt8o
a

h− laQ̇a + HsQa,Qa−1;la − la−1dj, s29d

where for simplicity we have chosen real counting variables,ila→la. The imaginary counting
variables will be restored at the end of the section. The only constraint made onH is that
probability is conserved,Hsla−la−1d=0 for la=la−1. We now derive a lattice field theory by
formally expandingH in la−la−1 andQa−Qa−1. Only differences of the counting variables will
appear in the series expansion, while we must keep the fullQ dependence of the Hamiltonian. If
there areN@1 nodes in the lattice, for fixed boundary conditions the difference between adjacent
variables,la−la−1 andQa−Qa−1 will be of order 1/N, and therefore, provides a good expansion
parameter. The expansion of the Hamiltonian(29) to second order in the difference variables gives

H =
] H

] la

sla − la−1d +
1

2

]2H

] la
2 sla − la−1d2 +

]2H

] Qa ] la

sQa − Qa−1dsla − la−1d, s30d

where the expansion coefficients are evaluated atla=la−1 and Qa=Qa−1 and are functions of
Qa−1. Terms involving only differences ofQa−Qa−1 are zero becauseHsla−la−1d=0 for la

=la−1. All terms in Eq.(30) need explanation. First, the expression]H /]la is the local current at
zero bias(because the charges in adjacent nodes are equal) which will usually be zero. There may
be circumstances where this term should be kept,37 but we do not consider them here. The term
]2H /]Qa]la=−GsQa−1d is the linear response of the current to a charge difference. Hence,G is
the generalized conductance38 of the connector between nodesa anda−1. ]2H /]la

2 =CsQa−1d is
the current noise through the same connector becauseH is the generator of current cumulants.

We are now in a position to take the continuum limit by replacing the node indexa with a
coordinatez, introducing the fieldsQszd ,lszd, and making the expansions

FIG. 2. A one-dimensional lattice of nodes connected on both ends to absorbing reservoirs. This situation could represent
a series of mesoscopic chaotic cavities connected by quantum point contacts.
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la − la−1 → l8Dz+ s1/2dl9sDzd2 + OsDzd3, s31ad

Qa − Qa−1 → Q8Dz+ s1/2dQ9sDzd2 + OsDzd3. s31bd

The action may now be written in terms of intensive fields by scaling awayDz,

H → hsr,ldDz, Qa → rszdDz, GasDzd2 → Dsrd, CaDz→ Fsrd, s32d

and taking the limitoaH→edzhsr ,ld. One may check that expanding the Hamiltonian to higher
than second order inDz will result in terms suppressed by powers ofDz/L and consequently
vanish asDz→0. This scaling argument for the field theory is analogous to Van Kampen’s size
expansion.39 Though the lattice spacingDz does not appear in the continuum limit, it provides a
physical cutoff for any ultra-violet divergences that might appear in a loop expansion.

These considerations leave the one-dimensional action as

S= −E
0

t

dt8E
0

L

dzflṙ + Dr8l8 − 1
2Fsl8d2g. s33d

HereD is the local diffusion constant andF is the local noise density which are discussed in detail
below. It is very important that these two functionalsD ,F are all that is needed to calculate current
statistics. Classical field equations may be obtained by taking functional derivatives of the action
with respect to the charge and counting fields:dS/drszd=dS/dlszd=0 to obtain the equations of
motion,

l̇ = −
1

2

dF

dr
sl8d2 − Dl9, ṙ = f− Fl8 + Dr8g8. s34d

From the charge equation, one can see immediately that the term inside the derivative may be
interpreted as a current density so that local charge conservation is guaranteed. We have to solve
these coupled differential equations subject to the boundary conditions

rst,0d = rLstd, rst,Ld = rRstd, lst,0d = lLstd, lst,Ld = lRstd, s35d

whererLstd, rRstd, lLstd, and lRstd are arbitrary time dependent functions. FunctionsrLstd and
rRstd are the charge densities at the far left and right end of the system which may be externally
controlled. FunctionslLstd andlRstd are the counting variables of the absorbed charges at the far
left and right end which count the current that passes them.

Once Eqs.(34) are solved subject to the boundary conditions(35), the solutionsrsz,td and
lsz,td should be substituted back into the action(33) and integrated over time and space. The
resulting function,SspfrLstd ,rRstd ,lLstd ,lRstd ,t ,Lg is the generating function for time-dependent
cumulants of the current distribution. Often, the relevant experimental quantities are the stationary

cumulants. These are given by neglecting the time dependence, finding static solutions,ṙ= l̇=0,
and imposing static boundary conditions. Similarly to Sec. II D, we can also introduce sources
edtdzxsz,tdrsz,td and calculate density correlation functions.

To estimate the contribution of the fluctuations to the action, it is useful to define dimension-
less variables. The boundary conditionsrL, and rR provide the charge density scaler0 in the
problem, so we definerszd=r0fszd, wheref ,1 is an occupation. We furthermore rescalez→Lz,
and t→tDt, wheretD=L2/D is the diffusion time, thus obtaining

S= − Lr0E
0

t

dt8E
0

1

dz8Fl ḟ + f8l8 −
F

2Dr0
sl8d2G . s36d

We assume that the combinationF /Dr0 is of order 1. From Eq.(36), the dimensionless large
parameter isg=r0L@1, i.e., the number of transporting charge carriers. As in Sec. II C, the saddle
point contribution is of ordergt /tD, while the fluctuation contribution is of ordert /tD.

J. Math. Phys., Vol. 45, No. 11, November 2004 Fluctuation statistics in networks 4397

Downloaded 10 Apr 2006 to 128.165.21.98. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



Repeating this derivation in multiple dimensions withN charge speciesr=hrisr dj and count-
ing fieldsL=hlisr dj, i =1, . . . ,N yields the action

S= −E
0

t

dt8E
V

dr fLṙ + ¹ LD̂ ¹ r − s1/2d ¹ LF̂ ¹ Lg, s37d

where tensor notation is used and we have introducedF̂ij =]li
]l j

h and D̂ij =−]ri
]l j

h as general
matrix functionals of the field vectorr and coordinater which should be interpreted as noise and
diffusion matrices. If the medium is isotropic, then the vector gradients simply form a dot product.
It should be emphasized that the vectors appearing are vectors of different species of charge fields,
as all node delimitation has been accounted for in the spatial integration. The functional integral
now runs over all field configurations that obey the imposed boundary conditions at the surface
]V. Classical field equations may be formally obtained by taking functional derivatives of the
action with respect to the charge and counting fields as in the one-dimensional(1D) case.

As in any field theory, symmetries of the action play an important role because they lead to
conserved quantities. We first note that the Hamiltonianhsr , ¹r , ¹Ld is a functional of¹L alone
with no L dependence. This symmetry is analogous to gauge invariance, and leads to the equation
of motion

ṙ + ¹ · j = 0, j = − D̂ ¹ r + F̂ ¹ L, s38d

which can be interpreted as conservation of the conditional currentj . The next symmetry is related
to the invariance under a shift in the space and time coordinateshdr ,dtj. This symmetry leads to
equations analogous to the conservation of the local energy/momentum tensor.40 We do not ex-
plicitly give this quantity because it is rather cumbersome in the general case. However, for the

stationary limit (where ṙ and l̇ vanish) and for symmetric diffusion and noise tensors, the one
charge species conservation law is relatively simple and is given by

o
m

¹mTmn= 0, Tmn= jms¹nld − s¹nrdsD̂ ¹ ldm − hdmn. s39d

For the special case of a one-dimensional geometry, the Hamiltonian itself is the conserved
quantity (see Sec. V A).

In the continuum limit, all terms of higher order inL are suppressed so that the action is
quadratic in theL variables. This fact may be viewed as a consequence of the central limit
theorem and confirms the observation made by Nagaev that local noise in the mesoscopic diffusive
wire (see Sec. V A) is Gaussian.19 To further clarify the physical meaning ofD andF, and also to
make connection with previous work,32 we restore the complex variables,L→ iL, and make a
Hubbard–Stratronovich transformation by introducing an auxiliary vector fieldn,

exph− s1/2d ¹ LF̂ ¹ Lj = sdetF̂d−1/2E Dn exph− s1/2dnF̂−1n + in ¹ Lj. s40d

We may then integrate out theL variables, taking account of the boundary terms to obtain,

U = expHE
0

t

dt8E
]V

ds · siLaJdJ E DrDndsṙ + ¹ ·JdsdetF̂d−1/2expH−
1

2
E

0

t

dt8E
V

dr 8nF̂−1nJ ,

s41d

where thed above is a functional delta function, imposing the Langevin equation

ṙ + ¹ ·J = 0, s42ad
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J = − D̂ ¹ r + n, s42bd

with a current noise sourcen, whose correlator41 is given by

knsr ,tdnsr 8,t8dl = dst − t8ddsr − r 8dF̂srd. s42cd

J may be interpreted as the physical current density[not to be confused with the conditional

current density(38)] so that local current conservation is guaranteed, and thesdetF̂d−1/2 serves to
normalize then probability distribution. The role of the boundary term is to count the currentJ
flowing out of the boundary with the counting variableLa, which serves as a Lagrange multiplier.
This formula gives an immediate translation between the Langevin approach and full counting
statistics, a connection not previously known. The algorithm is as follows:

(1) Given a Langevin equation of the form(42), write the average of the boundary term with
sourceLa as a path integral(41) over noise and density fields;42

(2) introduce an auxiliary fieldL that takes on the valueLa at the boundaries and represents the
delta function in Eq.(41) imposing current conservation(42a) in Fourier form;

(3) integrate out the Gaussian noise to obtain an action of the form of Eq.(37);
(4) find where the first variation of the action is zero and solve the equations of motion subject

to the boundary conditions;
(5) insert the solutions back into the action, and do the space and time integrals. The answer is

the current cumulant generating function.

IV. PERTURBATION THEORY

We have shown in Sec. II C that a large number of participating elementary charges justifies
the saddle point approximation for the generator of counting statistics. While the generator may
sometimes be found in closed form,7 in general, it has no compact expression and the cumulants
should be found separately at every order. This may be done by expandingSspsQ,l ,xd as a series
in x and solving the saddle point equations to a given order inx directly. However, there is another
approach for evaluating the higher cumulants, the cascade diagrammatics representing higher-
order cumulants in terms of the lower ones. It has been introduced by Nagaev in the context of
mesoscopic charge statistics in the diffusive wire19 and later extended to the chaotic cavity,20 but
without proof. The basic idea is that lower order cumulants mix in to yield corrections to the bare
fluctuations of higher order cumulants. This method was used successfully in Ref. 43 to explain
the recent experiment of Ref. 44. In this section, we demonstrate that these rules follow naturally
from the stochastic path integral in the same way as Feynman diagrams follow from the quantum
mechanical functional integral. In Sec. IV C we present another(simpler) method for computing
cumulants based completely on differential operators obtained from the Hamiltonian equations of
motion. In Sec. IV D we generalize the cascade diagrammatics to an arbitrary network, and to the
case of time-dependent correlators.

A. The principle of minimal correlations

To motivate the cascade diagrammatics, we refer to a specific physical system(see the inset of
Fig. 8), the mesoscopic chaotic cavity.1 For the purposes of this section, the cavity is a conserving
node carrying chargeQ, the electronic reservoirs correspond to the left and right are absorbing
nodes, and the two point contacts are the connectors described by HamiltoniansHL ,HR (see Fig.
3). Although a detailed description of this system is given in Sec. V B, we would like to mention
that the mesoscopic cavity is described by an electron distribution functionf, which is fluctuating
around its mean value,f0. The actual electrical charge in the cavityQ and the occupationf are
related via the large parameterg throughQ=gsf − f0d, whereg=DmNF@1 (the density of states at
the Fermi energyNF times the biasDm) is the maximum possible number of electrons on the
cavity which contribute to the transport(see Sec. II C).
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The cascade approach builds on the principle of minimal correlations developed in Ref. 18:

The point contacts create bare noisekkĨL
2ll=]2HL / s]ilLd2, andkkĨR

2ll=]2HR/ s]ilRd2 with no cor-

relation, kkĨLĨRll=0 [see Eq.(5)]. However, for times longer than the average dwell time of
electrons in the cavity, the current conservation requirement imposes “minimal correlations” on
the fluctuations of the physical currentsIL and IR, which can be expressed in the form of the
Langevin equations,

IL = ĨL − GLQ, IR = ĨR + GRQ, s43d

whereĨL,R are now the sources of bare noise,GL,R are the generalized conductances of the left and
right point contact, andQ is the fluctuating charge in the cavity. Current conservation of the
physical currents,IL= IR= I, can now be used to obtain

I =
GRĨL + GLĨR

GL + GR
, Q =

ĨL − ĨR

GL + GR
. s44d

Combining powers ofI andQ and averaging over the bare noise, we obtain the minimal correla-

tion result for arbitrary cumulantskkQkIlllm. In particular, usingkkĨLĨRll=0, we find the second
cumulant of current is17,18

kkI2ll = kkI2llm =
GR

2kkĨL
2ll + GL

2kkĨR
2ll

sGL + GRd2 , s45d

where the subscriptm denotes the minimal correlation result. We stress that the bare correlators

kkĨL,R
2 ll are fully determined by the average occupation functionf0 of the cavity.
This example demonstrates that a simple redefinition of the current fluctuations makes it

straightforward to find the noise. Therefore, it came as a surprise45 that the minimal correlation
approach is not sufficient to correctly obtain higher-order cumulants of current. The reason for the
failure of the minimal correlation approach has been found recently by Nagaev,19 who showed that
from the third order cumulant on, there are “cascade corrections” to the minimal correlation result,
which may be interpreted as “noise of noise.” For example, the third cumulant of current through
the mesoscopic cavity,20

kkI3ll = kkI3llm + 3kkIQllm
]

] Q
kkI2llm, s46d

contains a contribution from fluctuations of the charge in the cavity that couples back into the
current fluctuations. The factor of 3 comes from the fact that there are 3 independent currents that
the charge fluctuation may be correlated with. For higher cumulants, there will be more cascade
corrections that may be represented in a diagrammatic form.19,20

B. Derivation of diagrammatic rules

We now present a derivation of these diagrammatic rules for a single node attached between
two absorbing nodes. Generalizations to an arbitrary network will subsequently be given in Sec.

FIG. 3. Network representing a chaotic cavity. The state of the internal node is described by the variableQ, the charge on
the cavity. The statistics of the connectors are characterized by the two generating functionsHL,R.
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IV D. As we have shown in Sec. II C, the charge scale imposed by the boundary conditions,g,
gives a dimensionless large parameter which justifies the saddle point approximation of the path
integral, so that fluctuations around the saddle point are suppressed by 1/g. In the diagrammatic
language, we will show that loop diagrams are suppressed by the same factor 1/g. The diagram-
matic approach given here is based on perturbation theory originally developed in quantum
mechanics.29

Consider the path integral expression of the generating function for the charge absorbed in the
left (L) and right(R) node:

ZsxL,xRd =E DQDl expHE
0

t

dt8f− iQ̇l + HsQ,l,xL,xRdgJ , s47d

whereH=HLsQ,l−xLd+HRsQ,xR−ld. The perturbation theory is formulated as follows. First,
the external counting variables are set to zero,xL=xR=0. The HamiltonianH→HLsQ,ld
+HRsQ,−ld has a stationary saddle point located athQ0,l0j that we wish to define as the origin of
coordinates. The probability distributions of transferred charge are normalized, so

u]Q
n HL,RsQ,ldul=0 = 0, ∀ n. s48d

In particular, ]QHLsldul=0=]QHRsldul=0=0, and thereforel0=0. Next, ]ilHsldul=0=kILsQdl
−kIRsQdl=0, sinceHL andHR are the generators of the left and right current respectively. There-
fore, Q0 is fixed as the charge in the node such that left and right connector currents are equal on
average. The stability of the saddle point is guaranteed by the fact that the bare noise correlators,

kkĨL,R
2 ll, are positive. The derivatives]il]QHL=−GL ,]il]QHR=−GR define the generalized conduc-

tance of each connector, where the current flows from left to right in both connectors.
The principle of minimal correlation plays an important role in the cascade diagrammatics. We

will show that this principle is equivalent to exploiting certain freedoms in the path integral in
order to postpone the cascade corrections to third and higher order cumulants. In the long-time
limit, t@tC (where 1/tC=GL+GR is the relaxation rate of the charge in the node), the absorbed
current is conserved,IR= IL. Therefore, the current through the node can be defined as weighted
average of the left and right connector currentsI =s1−vdIL+vIR, wherev is an arbitrary constant.
The corresponding counting variablex is introduced by substitutingxR=vx and xL=sv−1dx.
Consider now the second derivative

U ]2H

] ix ] Q
U

x=0
= sv − 1dGL + vGR. s49d

We may set it to zero by fixingv=GL / sGL+GRd. This is equivalent to imposing conservation of
current fluctuations as in Eq.(44). If we consider further the derivative

U ]2H

] il ] Q
U

x=0
= − sGL + GRd, s50d

we have the freedom to scalel to make the right hand side of Eq.(50) equal to −1[this scaling
only alters thex independent prefactor of Eq.(47)]. The Hamiltonian takes the new form

H = HLSQ,
GRx + l

GL + GR
D + HRSQ,

GLx − l

GL + GR
D . s51d

We refer to these new variables as minimal correlation coordinates and will see that they simplify
the diagrammatic expansion.

DefinedQstd=Qstd−Q0 anddlstd=lstd−l0. If we expand the Hamiltonian in a power series
in x, dQ, anddl, the terms linear indQ anddl vanish at the saddle point, as well as thesdQd2

coefficient by Eq.(48) with n=2. As argued above, in the minimal correlation coordinates,
]il]QHsQ0,l0d=−1. With these transformations, we may split the actionS as

J. Math. Phys., Vol. 45, No. 11, November 2004 Fluctuation statistics in networks 4401

Downloaded 10 Apr 2006 to 128.165.21.98. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



S= S0 +E
0

t

dt8Vst8d, S0 = − iE
0

t

dt8dlstCdQ̇ + dQd, s52d

whereV represents the rest of theH power series and will be treated perturbatively. It should be
emphasized thatV is a general nonlinear function ofdl, so unlike most quantum examples, the
full momentum dependence must be kept.

In order to formulate the perturbation theory, we add two sources,J and K to the action,S
→S+edt8fJdQ+ iKdlg, so that any average of a function of the variablesdQ,dl may be evalu-
ated by taking functional derivatives with respect to the sourcesJ, andK, and then setting the
sources to zero. In particular, for the generating function we can write

Zsxd =E DQDl expHE
0

t

dt8VsdQ,dl,xdJexpUHS0 +E
0

t

dt8fJdQ + iKdlgJU
J,K=0

= expHE
0

t

dt8VS d

dJ
,

d

diK
,xDJ E DQDl expUHS0 +E

0

t

dt8fJdQ + iKdlgJU
J,K=0

. s53d

Using S0. from Eq. (52) we evaluate the integral overQ andl and obtain

Zsxd = expHUE
0

t

dt8VS d

dJ
,

d

diK
,xDJWsJ,KdU

J,K=0

, s54d

where the functionalWsJ,Kd is

WsJ,Kd = expHE E
0

t

dt8dt9Jst8dDst8,t9dKst9dJ . s55d

The operatorD=stC]t+1d−1 is the retarded propagator, and may be found explicitly by inverting
the kernel in frequency space,

Dst,t8d =E
−`

` dv

2p

e−ivst−t8d

− itCv + 1
= tC

−1Qst − t8dexpf− st − t8d/tCg. s56d

It describes the relaxation of the chargeQstd to the stationary stateQ0 with the rate 1/tC=GL

+GR.
Expanding the exponential in Eq.(54) and taking thet@tC limit, we arrive at the following

expression for thenth current cumulant

kkInll = t−1 dn

dsixdnUo
m=1

`
1

m!FE0

t

dt8VS d

dJ
,

d

diK
,xDGm

WsJ,KdU
x = J = K = 0

connected

. s57d

According to the linked cluster expansion,32 by considering lnZsxd rather thanZsxd, we have
eliminated all disconnected terms. In order to compare with the results of Ref. 20, we introduce a
new notation by defining

]Q
j kkQkIlllm ; ]Q

j ]il
k ]ix

l VsQ0,l0,x = 0d. s58d

Here kkQkIlllm is the irreducible correlator expressed in terms of the noise sources, i.e., the
minimal correlation cumulant. In this notation, the expansion ofV in a Taylor series of all vari-
ables takes the form:
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VsdQ,dl,xd = o
j ,k,l

1

j ! k ! l!
]Q

j kkQkIlllmfdQstdg jfidlstdgkfixgl . s59d

Inserting the expansion Eq.(59) into the formula for the current cumulants Eq.(57) gives the
formal solution to the problem. From the form ofWsJ,Kd andV, we can immediately read off the
diagrammatic rules with the internal lines given by the propagators(56), and the expansion
coefficients]Q

j kkQkIlllm playing the role of vertices.
The following simplifications can be done before the rules are finally formulated. First, it is

straightforward to see that loop diagrams are suppressed by powers ofg−1. Indeed, according to
our single-parameter scaling assumption, the action(52) has a large prefactorg, which can be
explicitly displayed,S→g S, by rescaling the charge,Q→g Q. Then it becomes clear that each
propagatorD, represented by an internal line, comes with a factor ofg−1. Each vertex comes from
V and therefore has a factor ofg. If a diagram hasI internal lines,E external legs,V vertices and
L loops, it will come with a totalg power ofV− I. Furthermore, Euler’s formula tells us thatV
+L− I =1. Therefore, diagrams with no loops(“tree” diagrams) come with a power ofg, while
loop diagrams are suppressed by the number of loops,g1−L. From now on we will concentrate on
tree-level diagrams, since they represent current cumulants at the level of the saddle-point ap-
proximation.

Second, in the long time limit,t@tC, each propagator(56) integrated over time gives 1. As a
result, since every vertex is connected to at least one other vertex, all the time integrals together
simply give a factor oft, and the time dependence cancels on the right hand side of the Eq.(57).
There are no time integrals in the vertices and the propagators just give a factor of 1 as in Ref. 20.
We are now able to formulate the diagrammatic rules for high-order current cumulants:

(1) Thenth order cumulantkkInll is a connectedn-point function ofn external legsI represented
by solid arrows[see Fig. 4(a)];

(2) the external legs must be connected by using vertices[see Fig. 4(b)] and linking internal
dashed lines to internal dashed arrows;

(3) the vertices]Q
j kkI lQkllm are represented by a circle withl external legs,k internal outgoing

dashed lines, andj internal incoming dashed arrows[see Fig. 4(b)].
(4) Multiply each diagram by the number of inequivalent permutations(NIP).

Formally, the vertices]Q
j kkI lQkllm are the expansion coefficients in(59). However, it is im-

portant to note that they can also be easily evaluated by solving the Langevin equations(43) and
expressing the minimal correlation cumulantskkI lQkllm in terms of cumulants of the noise sources,

kkĨL
l+kll and kkĨR

l+kll. Some vertices are zero,]pH /]QpsQ0,l0dux=0=0 because of probability con-
servation, but other may or may not be zero depending on the physical system. Here, the advan-
tage of the minimal correlation coordinates is made clear: the vertex]QkkIllm=0, and therefore any
diagram that contains this vertex is zero[see Fig. 4(d)].

FIG. 4. (a) An n-point current cumulant.(b) The vertex connectingl external lines withj internalQ lines andk internall
lines. (c) The propagator connectingl to Q, equal to 1 in the stationary limit.(d) The vanishing vertex]QkIl in minimal
correlation coordinates.
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To obtain the overall prefactor of a diagram, one can write out all the numerical constants and
count the number of different ways of producing the same diagram.32 For example, there is then!
from thex derivatives, the 1/m! from the Taylor series ofeV, a binomial coefficient from expand-
ing Vm, and the 1/s j ! k! l ! d from every vertex withj +k+ l attachments for the different lines. To
compensate these factors, we have to do the combinatorics of the number of equivalent terms:
Interchange the vertices, find the number of different placements of lines on a vertex, etc. Often,
the number of permutations of then external legs will cancel them!, and thej ! k! l! number of
permutations of the internal legs attaching to the vertex will cancel that factor arising from the
Taylor expansion.

Rather than making this expansion, there is a simpler method which exploits these cancella-
tions given by counting the number of inequivalent permutations of the diagram(NIP). The NIP
of the diagram is defined by how many ways the external legs of the diagram may be relabeled,
such that the diagram is not topologically equivalent under deformation of the external legs. In
other words, a diagram withn external legs hasn! ways of labeling them. If this diagram with a
given labeling of the legs may be topologically deformed to give the diagram back with a different
labeling, these two sets of labelings are equivalent permutations. If we write out all the different
labelings the external legs can have, and cross out every labeling that is an equivalent permutation
of another, then the number of labelings that remain is the NIP. This number is most easily found
by dividing n! by the number of equivalent permutations of the diagram. The number of equiva-
lent permutations of the diagram is also called the symmetry factor of the diagram.

We illustrate these two approaches with the third cumulant, see Fig. 5. With the simplifications
discussed above, these diagrams may be written as

kkI3ll = kkI3llm + 3kkIQllm
]

] Q
kkI2llm + 3kkIQllm

2 ]2

] Q2kkIllm. s60d

Note that diagram(c) does not appear in Ref. 20, because it happens to vanish for the chaotic
cavity [see also Eq.(46)]. Referring to the formula(57), the contributions in Eq.(60) are from
m=1,2,3 respectively. Each diagram must have ax3 term in the expansion. We first show the
combinatorial method to obtain the prefactor: Diagram(a) has a factor of 1/3! from the number of
permutations of thex variables, canceling the 3! from thex derivatives. Diagram(b) has a factor
of 1/2! from the number of permutations of thex variables, a factor of 1/2! from the Taylor series
of the exponential, a factor of 2 from the binomial expansion ofV2, and the 3! from thex
derivatives, leaving a factor of 3. Diagram(c) has a factor of 1/3! from the Taylor series of the
exponential, a factor of 3 from the binomial expansion ofV3, a factor of 1/2! from the number of
permutations of thedQ variables, a factor of 2 from the functional derivatives acting onW, and the
3! from the x derivatives, leaving a factor of 3. The NIP is simpler to derive: We divide the
number of permutations of the external legs,m!, by the number of equivalent permutation of the
elements of the diagram that leave it unchanged. The number of equivalent permutations of
diagrams(a,b,c) are 3! ,2 ! ,2!, leaving the overall factors 1, 3, 3.

The computation of these diagrammatic contributions is best understood by a little practice on
some examples. Consider three of the diagrams that contribute to the fourth cumulant drawn in
Fig. 6. The diagrams symbolically represents the combinations:

FIG. 5. Tree level contributions to the third cumulant of transmitted current.
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sad =
]

] Q
kkI2llm

]2

] Q2kkQllmkkIQllm
2 , s61ad

sbd =
]3

] Q3kkIllmkkIQllm
3 , s61bd

scd = kkQ2llmS ]2

] Q2kkIllmD2

kkIQllm
2 . s61cd

To figure out the numerical prefactors, we divide 4!(4 is the number of external legs) by the
symmetry factor of the diagram. We first consider the symmetry factor of(a): The upper two legs
may be flipped, and the lower two legs may be independently flipped where the dotted arrows join
without altering the topology of the diagram. Therefore, the symmetry factor is 232=4, and the
NIP is 4! /4=6. Moving on to diagram(b), the three lower legs may be permuted amongst
themselves to give a symmetry factor 3!, and therefore, the NIP is 4! /3 ! =4. Finally, diagram(c)
may be flipped about its center for a symmetry factor of 2, giving a NIP of 4!/2=12.

C. Operator approach

In the stationary limit,t@tC, the action takes the formS= tHsQ,l ,xd so that the evaluation of
the cumulant generating function reduces to finding the stationary point of the HamiltonianH as
a function of the variablesl andQ. This can be done by solving the equations]QH=0 and]lH=0.

The generating function is then obtained by substituting the solutionshQ̄,l̄j into the Hamiltonian.
In the previous section we have shown that this problem can be solved using path integral
methods, and the solution can be represented diagrammatically. In the next section we will exploit
the full strength of the path integral formalism in order to generalize the diagrammatics to an
arbitrary network, and for the case of time-dependent charges. However, in the stationary limit, the
conceptual simplicity of the problem of finding the stationary point of the functionH indicates that
there should exist a simple iterative procedure for evaluating the cumulants up to a given order. In
this section we use classical mechanics methods to prove that this is indeed the case.

We first make the variable transformationil→l, and ix→x, so that the Hamiltonian be-
comes a real function. Forx=0 the saddle point is located athQ0,l0j. For nonzerox the saddle

point moves to a new positionhQ̄,l̄j, which depends onx, and the HamiltonianHsQ̄,l̄ ,xd
becomes the generator of cumulants of the current,

kkInll = dnHsQ̄,l̄,xd/dxn
ux=0u. s62d

By expressing the totalx derivative in terms of partial derivatives, the average current can be
written as

FIG. 6. Three examples of diagrams contributing to the fourth cumulant.
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kIl = s]x + Q8]Q + l8]ldHusQ,l,xduhx=0,Q0,l0j, s63d

whereQ8=dQ/dx ,l8=dl /dx arex dependent. We wish to eliminate the functionsQ8 andl8 and
to express the cumulant in terms of the partial derivatives ofH. This is done by applying a total
derivative to the equations of motion:f]QHg8=f]lHg8=0 and leads to two equations forQ8 andl8
which may be solved,

Q8 =
h]lH,]xHj
h]QH,]lHj

, l8 = −
h]QH,]xHj
h]QH,]lHj

, s64d

wherehA,Bj is the Poisson bracket, defined ashA,Bj=]lA ]QB−]QA ]lB. The solutions have to
be inserted into the Eq.(63).

The advantage of this representation is clear: Now the right hand side of the Eq.(63) (before
taking thex=0 saddle point) depends only on variablesl, Q, andx. Therefore, we can apply the
procedure again in order to express the high-order cumulant in terms of partial derivatives. This
procedure solves the problem by giving a single operator,

D = ]x +
h]lH,]xHj]Q − h]QH,]xHj]l

h]QH,]lHj
, s65d

which, being appliedn times to a given HamiltonianH and evaluating the resulting expression at
the x=0 saddle point, gives cumulants of current:

kkInll = DnHusQ,l,xduhx=0,Q0,l0j. s66d

This approach is obviously more simple compared to the diagrammatic method, since in the
diagrammatics, after drawing all of the diagrams, they have to be evaluated individually by taking
many partial derivatives of the Hamiltonian and evaluating them at thex=0 saddle point. With
this new approach, given the HamiltonianH, the operator D may be constructed(65) and with a
mathematical program, an arbitrary cumulant may be easily computed(66).

It is easy to see the importance of the minimal correlation coordinates in this solution. After
applying D several times, the derivative quotient rule generates a large number of denominators,
h]QH ,]lHj=s]Q]lHds]l]QHd−s]Q]QHds]l]lHd. At x=0, as we argued previously,]Q]QH=0, and
it is possible to change coordinates so that]Q]lH=−1. As a result, the denominator in(66) is equal
to 1, which greatly simplifies the expansion. Finally, we would like to stress that the operator
approach, introduced in this section for the one node case, can be easily generalized to a network.

D. Network cascade diagrammatics: Correlation functions

Consider now a general network. In the Sec. IV B, we saw that the dominant contribution to
Eq. (47) arises from tree-level diagrams. On time scalest@tC, the time dependence drops out, and
the current cumulants are static. We now generalize the diagrammatic rules presented in the Sec.
IV B to investigate time- and node-dependent correlation functions of conserved and absorbed
charges, Eq.(19). To define the network, we must arbitrarily label the current flow, yielding a
directed network. By doing so we fix the signs of the elementsHab=−Hba of the Hamiltonian. In

particular, the elements of the generalized conductance matrixĜ,

Gab =
]2H

] silad ] Qb

s67d

(evaluated atQ=Q0,L=0) are negative or positive depending on the chosen direction. If we

segregate absorbing(a) and conserving(c) nodes, the conductance matrixĜ may be put in block

form. Two of them, the blocksĜcc (real symmetric) and Ĝac will be relevant. This gives us the
necessary tool to define the generalized minimal correlation coordinates. We consider the fre-
quency dependent response by letting the evolution time extent to infinity, and introduce the time
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Fourier transform of the variableshQc,Lc,xc,xaj, where the vectorhxc,xaj is a time-dependent
source term introduced to produce correlation functions of the conserved and absorbed currents
[see Eq.(19)].

Following the steps of Sec. IV B, we again split the action into two parts,S=S0+edtV, where

S0 = i E dtf− LcQ̇c + LcĜccQ
c + sxcĜcc + xaĜacdQcg

= i E E dvdv8

2p
fLcsiv8 + ĜccdQc + sxcĜcc + xaĜacdQcgdsv + v8d, s68d

and where we have dropped thed in front of the variables for simplicity. As in Sec. IV B, the
generalized minimal correlation coordinates are defined by shifting and rescaling theLc variables
in order to eliminate thex variables in Eq.(68). However, becausex is now a vector, the
proportionality factor must be a frequency dependent matrix,

Lcsvd → D̂†svdfLcsvd + Ĝcc
† xcsvd + Ĝca

† xasvdg. s69d

Here D̂svd is the matrix network propagator,

D̂svd = − sivÊ + Ĝccd−1, s70d

andÊ is the identity matrix. It is straightforward to verify that after the shift, the functionaledtV
becomes the generator of cumulants of minimal correlation currents, i.e., of the currents which are
solutions of the Langevin equations:

Ia
c = − ivQa

c = − ivo
bg

DabsvdĨbg, s71ad

Ia
a = o

bga8

Gaa8Da8bsvdĨbg + o
g

Ĩag, s71bd

where Ĩab are the bare noise sources as defined in Eq.(5). We finally rescalexcsvd
→xcsvd / sivd in order to replace conserved currents with charges,I c→Qc.

The total action now acquires the following form

S= s2pid−1E dvLcs− vdQcsvd +E dtVfQc,D̂†sLc + xcd + D̂†Ĝca
† xa,xag, s72d

where the simplified form of theL argument ofV follows after composing the various transfor-
mations. Following the plan of the previous section, we replace the charge and counting variables
hQsvd ,Lsvdj by functional derivatives with respect to the charge and counting sources
hJsvd ,K svdj, and take theV term outside of the functional integral. The functional integrals may
now be performed to obtain

WsJ,K d = expHE E dvdv8

2p
Jsv8dK svddsv + v8dJ . s73d

The perturbationV must now be expanded in a Taylor series with respect to all variables. The time
dependence only appears through the variables themselves, so the expansion coefficients will be
time independent, with the exception of the propagatorDabsvd multiplying the counting variables.
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V = o
hia,ja,ka,laj=0

`
d j1+¯+jn

dsQ1
cd j1

¯ dsQn
cd jn

kksI1
adl1

¯ sIr
adlrsQ1

cdi1
¯ sQq

cdiqsQ1
cdk1

¯ sQp
cdkpllm

3
sx1

adl1

l1!
¯

sxr
adlr

l r!
3

sx1
cdi1

i1!
¯

sxr
cdiq

iq!
3

l1
k1

k1!
¯

lp
kp

kp!
3

sQ1
cd j1

j1!
¯

sQn
cd jn

jn!
. s74d

As in the one node case, the verticesdQ
a
ckIb

al vanish. We note again that the notation chosen for the
expansion coefficients in Eq.(74) connects the formalism described here with the Langevin
equation point of view. The minimal correlation cumulantkk¯llm may be calculated either by the
expansion procedure described by Eqs.(72) and (74), or by expressing the physical currents and
charges in terms of the current source cumulants by solving the Langevin equations for currents
and charges, given by Eq.(71).

The nth order irreducible correlatorkkI1
asv1d¯Qn

csvndll may be expressed as a tree-level
diagram withn external lines representing absorbed currentsIa

a and conserved chargesQa
c . Every

vertex is local in time, so if there arep legs at a vertex, each is assigned an independent frequency,
while the time integral imposes overall frequency conservation,dsoi vid. The cascade rules are
generalized as follows:

(1) Every vertex represents the object

dQ1
csv1d ¯ dQl

csvld
kkI l+1

a svl+1d ¯ Qn
csvndllm,

which is multiplied by ad-function conserving overall frequency,dsoi=1
n vid;

(2) the minimal correlation cumulantskkI l+1
a svl+1d¯Qn

csvndllm may be evaluated by expressing

them in terms of cumulants of sourceskkĨab
n ll via the solutions(71) of the Langevin equa-

tions, or by Eq.(74) if the Hamiltonian is known;
(3) the internal dashed arrow goes fromQa

csvd to dQ
a
c svd. It conserves the node indexa and the

frequencyv;46

(4) external lines for absorbed currents and conserved charges originate fromIa
asvd or Qa

csvd of
the vertexes. They conserve the node index and the frequency;

(5) sum over all internal node indices, and integrate over all internal frequencies to remove all
but one of the frequency delta functions;

(6) the result has to be multiplied by the total number of inequivalent permutations.

The cascade rules are easily extended to the field theory(see Sec. III). The functional analog
to the inverse conductance matrix is the operator

Ĝ−1sr − r 8d ;
d2h

dlsr ddrsr 8d
= − dsr − r 8d ¹ D̂ ¹ . s75d

The diffusion propagatorsiv+Ĝ−1d−1 can be used to solve the Langevin equations(42) for the
densityrsv ,r d and currentIsvd in order to evaluate minimal correlation cumulants. We would like
to stress that these cumulants are limited to second order only, because in the diffusion limit the
noise sources are Gaussian. The summation over node indices is replaced with an integration over
the coordinater .

V. APPLICATIONS

The formalism presented above is intentionally abstract and general. This is to facilitate
maximum applicability and not to tie it to a particular field. However, it is important to give
concrete examples. For this reason, we give a detailed treatment of two problems. As a first
problem, we consider the saddle-point equations of the 1D field theories forD and F being
arbitrary functions of the densityr [see Eq.(33)]. We apply the results of this analysis to the
transport in a diffusive mesoscopic wire at zero temperature, rederive the FCS generating function
of the transmitted charge obtained in Refs. 8 and 10, and give new results. We also prove the
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conjecture made in Ref. 22 that the current noise of the diffusive symmetric exclusion process at
half-filling is Gaussian, i.e., all high-order cumulants of transmitted charge vanish. In the end of
the Sec. V A we generalize our results to multi-dimensional diffusion models and prove the
universality of their transport statistics. As a second problem, we address the statistics of charge
fluctuations in a mesoscopic chaotic cavity. We explicitly find the probability distributions for
different physical configurations.

A. FCS for one-dimensional field theories. The mesoscopic diffusive wire

Before demonstrating our solution for the FCS of the mesoscopic diffusive wire specifically,

we first consider the general 1D field theory with the action(33). In the stationary limit,ṙ= l̇
=0 the action can be written as

S= tE
0

L

dzF− Dr8l8 +
1

2
Fsl8d2G . s76d

The stationary saddle-point equations

sFl8 − Dr8d8 = 0, 2Dl9 +
dF

dr
sl8d2 = 0, s77d

can be partially integrated leading to the following two equations:

Dr8 = ± ÎI2 − 2HF, s78ad

l8 = 2H/sI − Dr8d. s78bd

The two integration constantsI=−Dr8+Fl8 andH=−Dr8l8+sF /2dsl8d2 are the conserved(con-
ditional) current and the Hamiltonian density, respectively. These conservation laws follow from
the symmetries of our 1D field theory[see Eqs.(38) and (39) and the surrounding discussion].
Thus we obtain the following result for the action(76),

S= tLH. s79d

Equations(78) and(79) represent the formal solution of the FCS problem for 1D diffusion models
with Dsrd andFsrd being arbitrary functions ofr. The following procedure has to be done in order
to obtain the cumulant generating functionSsxd of the transmitted charge:

(1) The differential equation(78a) has to be solved forrszd with the boundary conditions
rszduz=0=rL andrszduz=L=rR. The constantI should be expressed through the constantsrL,
rR, andH;

(2) next,rszd is substituted into Eq.(78b) which is integrated to obtainlszd with the boundary
conditionslL=0 andlR=x;

(3) finally, using the solution forlszd the constantH is expressed in terms ofrL, rR, x, and
substituted into the action(79).

We note that by expressingH andx in terms ofI, we may also formally obtain the logarithm
of the current distribution,

ln PsId = SsId − tIxsId, I → I , s80d

as a result of the stationary phase approximation for the integralPsId=edx expfSsxd− tIxg and
because]H /]x=I /L.

As an example of the 1D field theory, we consider the FCS of the electron charge transmitted
through the mesoscopic diffusive wire. When the chemical potential differenceDm=mL−mR.0 is
applied to the wire, the electrons flow from the left lead to the right lead with the average current
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I0=e−1GDm, whereG is the conductance of the wire. The elastic electron scattering causes non-
equilibrium fluctuations of the current. At zero temperature, and for noninteracting electrons(the
cold electron regime), the zero-frequency current noise power has been found15,47,48to be equal to
kkI2ll=s1/3deI0, i.e., the noise is suppressed compared to the Poissonian value. The suppression
factor 1/3 was shown to be universal,49,50 i.e., it does not depend on the character of the disorder
or on the shape of the wire. The FCS of the transmitted charge has been studied in Refs. 8 and 10
using quantum-mechanical methods, and recently in Ref. 22 using a classical method with the
following result for the generating function of cumulants of the dimensionless chargeQ/e:

Ssxd = stI0/edarcsinh2fÎexpsxd − 1g. s81d

Here we will rederive this result using our classical method.
On the classical level, the electrons in the diffusive wire are described by the distribution

function fszd. Under transport conditions(and at zero temperature), this distribution fszd varies
from fL=1 in the left lead tofR=0 in the right lead. Starting from the Langevin equation32 as
described in Sec. III or, alternatively, taking the continuum limit for the series of mesoscopic
cavities,36 we arrive at the action(76) with the form51

S= stI0/edE
−1/2

1/2

dzf− f8l8 + fs1 − fdsl8d2g, s82d

where we have rescaled the coordinatez, rszd has been replaced with the distributionfszd, and
whereD=1, andF=2fs1− fd up to the overall constantI0/e. This form of F is quite general for
fermionic systems. It originates from the Pauli blocking factors, i.e., the transition probability is
proportional to the probability that the initial state is populated times the probability that the final
state is empty.15 Applying now the procedure described in the beginning of this section, we solve
the saddle-point equations and find the fieldsf andl,

fsz,xd =
1

2
F1 −

sinhs2azd
sinh a

G , s83ad

lsz,xd = 2 arctanhftanhsa/2dtanhsazdg, s83bd

a = arcsinhfÎexpsxd − 1g, s83cd

whereH=a2, so that according to the Eq.(79) we immediately obtain the result(81).
The logarithm of the current distribution lnfPsIdg can be now found from Eq.(80). We obtain

the following result:

lnfPsIdg = − stI0/edf2a coth a lnscoshad − a2g, s84d

wherea has to be expressed in terms ofI= I / I0 by solving the equation

a coth a = I/I0. s85d

The last equation has real positive solutions, 0,a,`, for I . I0, and pure imaginary solutions
a= ib with 0,b,p /2, for I , I0. The distributionPsId is strongly asymmetric around the average
current I = I0 (see Fig. 7). It has the following asymptotics: lnP=−stI0/edfI2−s2 ln 2dIg, for I
= I / I0@1, i.e.,P has a Gaussian tail, and lnP=−sp2/4dstI0/ed, for I =0.

We also plot the conditional electron occupationfsz,Id, Eq. (83a), for different values of the
normalized currentI / I0. There are several interesting points to stress.(i) For large currents,I . I0,
the functionf drops mostly at the ends of the wire, while for small currents,I , I0, the drop off
is mostly concentrated in the center of the wire. This effect has a simple explanation. At the end
points of the wire,z= ±1/2, theoccupationfszd is fixed independent of the particular value of the
currentI. On the other hand, its derivative takes the valuef8=−I=−I / I0 at z= ±1/2,which can be
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easily verified using Eqs.(83a) and (85). As a result,fszd deviates from its linear behavior,fszd
=1/2−z, characteristic of the average value of current,I=1. The actual reason for this effect is
that according to Eq.(42b) the total currentI=−f8+n contains a contribution from the source of
noise,n. The greatest contribution is concentrated at the center of the wire, where the noise power
F=2fs1− fd has its maximum, while it vanishes at the ends of the wire. Since the currentI is
conserved,f8 has to be redistributed in such a way as to partially compensate the effect of the
sourcen. (ii ) Fluctuations off are strongly suppressed at the ends of the wire, which is imposed
by the boundary conditions, and at the center of the wire, as a result of the discrete symmetry,
hz→−z; f →1− fj. (iii ) Eq. (85) has additional solutions withb.p /2. These solutions are not
physical however, sincef becomes negative or larger than 1 leading toI ,0, which is impossible
at T=0.

Returning to the saddle-point equations(77), we note that ifdF /dr=0 for a particular density
r0, then the fieldsrszd=r0, andlszd=xz/L solve these equations. The fluctuations of the current
become Gaussian with the noise powerkkI2ll=Fsr0d /L. This generalizes and proves the conjecture
made in Ref. 22 that the noise of the diffusive symmetric exclusion process is Gaussian at
half-filling, f =1/2.

As a final remark we note that the whole class of multi-dimensional field theories,

S= tE
V

dr f− ¹ l D̂ ¹ r + s1/2d ¹ l F̂ ¹ lg, s86d

with D̂=DsrdT̂, F̂=FsrdT̂, and T̂ being an arbitrary constant symmetric tensor,52 bear the same
kind of the universality as the shot noise in diffusive conductors discussed above(see Refs. 49 and
50). The reason is that the field theory with the action(86) can be mapped on the 1D theory with
the action(76) by making use of the parameterization

rsr d = rfwsr dg, lsr d = lfwsr dg, s87d

where the functionwsr d satisfies the equation

¹ · fT̂ ¹ wsr dg = 0. s88d

Using Eqs.(77) for r andl as functions ofw, it is straightforward to verify that the fieldsrsr d and
lsr d given by (87) and (88) satisfy the saddle-point equations for the action(86). One of the
equations is the conservation of current:

FIG. 7. The logarithm of the distribution of the current through a mesoscopic diffusive wire as a function of the ratioI / I0

of the current to its average valueI0. The distribution is strongly asymmetric, with the Gaussian tale atI @ I0. Inset: The
electron occupationf inside the wire as a function of the rescaled coordinatez, under the condition that the average current
I = I0, no currentI =0, and large currentI =5I0 has been measured.
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j = − D̂ ¹ r + F̂ ¹ l = IT̂ ¹ w. s89d

Since the 1D Hamiltonian density is conserved, the action takes the following form

S= tGH, s90d

where the constantG depends only on the geometry of the boundary]V by Eq. (88):

G =E
V

dr ¹ wT̂ ¹ w =E
]V

ds · wT̂ ¹ w. s91d

Consider now a two-terminal diffusive wire, so that the surface]V consists of the left]VL

and right]VR contact surfaces, and the open surface]V0 with no current through it. We choose
the boundary conditions forw to be

wsr d]VL
= 0, wsr d]VR

= 1, ds · T̂ ¹ wsr d]V0
= 0, s92d

so thatrsr du]VL
=rL, rsr du]VR

=rR, lsr du]VL
=0, lsr du]VR

=x, andds·j sr du]V0
=0. ThenH becomes a

function of rL, rR, and x, and the action is the generator of the cumulants of the transmitted
charge. If instead,H and x are expressed in terms ofI (as above for the 1D theory), then one
obtains the logarithm of the distribution of the current, lnfPsIdg=SsId− tIxsId, where I =GI, ac-
cording to Eqs.(89), (91), and(92). The constantG may be interpreted as a “geometrical conduc-
tance” of a wire. In particular, in the “ohmic” regime, i.e., whenD is independent ofr, we have
I0=Isxdux=0=DsrL−rRd, and thereforeG= I0/ fDsrL−rRdg. In this case, the ratioS/ I0 does not
containG and becomes fully universal, proving also the universality of the result(81) as a special
case.

To summarize, we have proven the universality of the FCS of the transmitted charge for a
two-terminal multi-dimensional generalized wire described by the action(86) with the noise tensor

FsrdT̂, being an arbitrary function of the charge densityr, and with the constant diffusion tensor

DT̂. The universality means that the FCS depends neither on the shape of the conductor, nor on its
dimensionality.53 The FCS of a mesoscopic wire given by Eq.(81) is a particular example of

universal FCS. In the more general case, whenD̂ is a function ofr, the FCS depends on the
geometry through only one parameterG, the geometrical conductance given by Eq.(91).

B. Charge fluctuations in a chaotic cavity

As another example of the applicability of the stochastic path integral approach, we now
consider transport through a chaotic cavity. This problem is often investigated in mesoscopic
physics because of its simplicity and conceptual clarity. A cavity consists of a large conducting
island of irregular shape that is connected to two metallic leads through quantum point contacts
(see inset of Fig. 8). The distinctive property of the chaotic cavity separating it from diffusive
conductors is that the conductance is determined solely by the ballistic point contacts. The chaotic
cavity itself may be either disordered or ballistic. Chaotic cavities can be described by a semi-
classical theory if the point contacts have conductances much larger thane2/h. The statistics of
current flow through the cavity have been addressed using various methods. The zero-frequency
noise power has been calculated using random matrix theory54 and the minimal correlation
principle.18 The higher order current cumulants have been obtained in Refs. 7 and 20. The results
are in complete agreement with random matrix theory.

In this section we will address another type of statistics. In a typical experimental setup, the
cavity is connected to the electrical circuit not only through the leads, but also through nearby
metallic gates via the electrostatic interaction. Observing potential fluctuations at these additional
gates gives direct insight into the statistics of charge on the cavity. The noise power of the charge
fluctuations in this system has been calculated in Ref. 55. The full statistics have been recently
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addressed using a random matrix theory.56 Here, we rederive these results using the stochastic path
integral, show new results on the temperature dependence of these statistics, and also investigate
the instantaneous fluctuation statistics.

In a semiclassical approach, both leadsL ,R and the cavity are described by electron distribu-
tion functionsfL , fR, and f. The Fermi functions in the leadsfa= fFsE−mad are characterized by
their chemical potentialma and their temperatureT. The chaotic electron motion inside the cavity
makes the cavity distribution functionfsE,td isotropic and position independent. Only its energy
dependence must be retained. From now on we set the electron charge to one,e=1. Then the
chargeQ in the cavity is given in terms of the electron distribution function and density of states
NF as Q=NFedEf. The average value of charge is determined by the low-energy cutoff of the
integral and is not relevant for the present discussion. The charge and electrostatic potential of the
cavity are related by a geometrical capacitanceCg. In the following, we restrict ourselves to the
caseCg@e2NF which describes complete screening of the charge in the cavity. A more general
discussion can be found in Ref. 56. To analyze the time evolution of the charge, we note that if the
size of the cavity is smaller than the electron–electron and electron–phonon scattering length,
every electron entering the cavity at a certain energy leaves it at the same energy. The single
electron energy is thus conserved and we can formulate a current conservation law separately for
each energy intervaldE,

NFḟsE,td = JLsE,td + JRsE,td, s93d

whereJa denote ingoing particle currents per energy intervaldE in the left and right contacts.
These currents are described by binomial processes with the cumulant generating function given
by5

Hasf,iladdE= G−1GadE lnf1 + Gfas1 − fdseila − 1d + Gfs1 − fadse−ila − 1dg, s94d

where we have introduced the conductances of the point contactsGa, a=L ,R, and their transpar-
encyG.

The quantity of interest is the total number of electrons in the cavity averaged over the
measurement timet,

Qt = sNF/tdE
0

t

dtE dEfsE,td. s95d

We first consider the long time limit,t@tD, wheretD=NF / sGL+GRd is the average dwell time of
an electron in the cavity. In this limit, the action is stationary with respect to the variablesf andl,

FIG. 8. The logarithm of the distribution of chargeQt in a symmetric cavity,GL=GR, averaged over measurement timet
in the long time limitt@tD and at zero temperature. The results are presented for several transparenciesG of the point
contacts. It is clearly seen that the tails of the distribution grow in the tunneling limitG!1. The distribution is symmetric,
i.e., odd cumulants vanish.
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S= tE dEfHsf,ild + isNF/tdxfg, H = HL + HR, s96d

where the external variablex generates the statistics of the desired quantityQt.
At zero temperatureT=0, the variablesl and f are independent of the energyE, and the

integration in Eq.(96) amounts to a multiplication byDm=mL−mR. Evaluating the Fourier trans-
form of the characteristic functionZsixd,

Zsixd = s2pd−1E dQdl expsSd, s97d

we express the full probability distributionPsQtd of charge on the cavity as an integral

PsQtd = s2pd−1E dl expftDmHsf,ildg, f = Qt /sNFDmd. s98d

This integral will be calculated in the saddle-point approximation. For the tunneling limitG!1
and for open point contactsG=1 we obtain

ln PsQtdG!1 = − tGDmfÎfs1 − f0d − Îf0s1 − fdg2, s99ad

ln PsQtdG=1 = tGDmF f0 lnS f

f0
D + s1 − f0dlnS 1 − f

1 − f0
DG , s99bd

whereG=GL+GR, and where we have introduced the average distribution functionf0=GL / sGL

+GRd in the cavity. We summarize that the results(99) have been obtained under the conditions
T=0, t@tD, and for G!1 and G=1. These results can be easily generalized to the case of a
multi-terminal cavity.

Although the general case of an arbitrary transparencyG has been also solved analytically, the
final expression for the charge distribution is too lengthy to be presented here. The Fig. 8 shows
the distributionPsQtd at zero temperature for various transparenciesG of the point contacts. The
cavity is taken to be symmetricGL=GR. It is clearly seen that the tails of the distribution grow
towards the tunneling limit.

At finite temperature, further analytical progress can be made by considering the first few
cumulants of the chargeQt. The integral(96) for the cumulant generating function has to be
evaluated at the saddle point. Forx=0 the solution of the saddle-point equations]S/]l=0 and
]S/]f =0 are simply given byl=0 and f = f0, where f0=sGLfL+GRfRd / sGL+GRd is the average
electron distribution function in the cavity. From the diagrammatic technique discussed in Sec. IV
we derive analytical expressions for the first few cumulants. The second cumulant has been
obtained in Ref. 55. As an example, we present here the result for the third cumulant for the case
of open point contacts,G=1:

kkQt
3ll = −

2tD
3

t2

GLGRsGL − GRd
sGL + GRd2 FDm + 3

Dm − kBT sinhsDm/kBTd
coshsDm/kBTd − 1

G . s100d

The first few cumulants are plotted in Fig. 9 as a function of the dimensionless biasDm /kBT. Note
that the fourth cumulant may change its sign as one goes from a symmetric cavitysb=0d to an
asymmetric cavitysb=0.9d.

So far we have considered the time of measurementt longer than the dwell timetD. Next we
consider the opposite limitt!tD (but still larger thant0=" /Dm) and study the instantaneous
fluctuations of the chargeQ in the cavity at zero temperature,T=0. For this purpose we will use
the stochastic path integral(3) for the propagatorUsQf ,Qi ,td of the cavity charge. The distribution
PsQd of instantaneous fluctuations can be obtained by taking thet→` limit of the propagator
UsQf ,Qi ,td and settingQf =Q. We note that in the long time limit,t@tD, the initial stateQi
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relaxes to the stationary stateQ̄, and as a result the saddle-point expression of the propagatorU

=expsSspd factorizes according toSsp=S0sQ̄d+SisQid+SfsQfd. Here the stationary contribution to
the action is zero,S0=0, since there is no charge accumulation on a long time scale. We will show
that the initial state contribution vanishes,Si =0, so the system looses its memory about the initial
state. Thus we obtain lnPsQd=SfsQd.

We now focus on the case of a cavity with two tunneling contactssG!1d. Using the Hamil-
tonians in Eq.(94), and replacing the counting variablel→ il, we write the action as

S= GDmE dtftDl ḟ + hssl, fdg, s101ad

hs = s1 − f0dfsel − 1d + f0s1 − fdse−l − 1d, s101bd

wherehs is the scaled Hamiltonian. The saddle point equations take the following form

tDḟ = − s1 − f0dfel + f0s1 − fde−l, s102ad

tDl̇ = sinhsld + s1 − 2f0dfcoshsld − 1g. s102bd

The solution of the Eq.(102b) for l reads

lstd = lnF 1 + Af0 expst/tDd
1 − As1 − f0dexpst/tDdG , s103d

whereA is the integration constant.
To show that the initial contribution to the actionSi is zero, we note that independent of the

constantA, the absolute value ofl is a growing function with the stationary state given byl̄
=0 at t=−`. This means that starting from early timest0→−`, the solutions arelstd=0 and
fstd− f0=ffst0d− f0gexpf−st− t0d /tDg. They describe the relaxation of the initial statefst0d to the

stationary statef̄ = f0. Substituting these solutions to Eqs.(101) we immediately find thatSi =0.
After making this point we skip the rest of the details and present the final result for

ln PsQd=SfsQd:

ln PsQdG!1 = − tDGDmF f lnS f

f0
D + s1 − fdlnS 1 − f

1 − f0
DG , s104d

which can now be compared to the results(99). The cumulant generating function for the distri-
bution (104) is given by Ssxd=tDGDm lnf1+ f0sex−1dg. Note thattDGDm=NFDm is the total
number of the semi-classical states in the cavity which participate in transport. Therefore the
distribution(104) can be interpreted as being a result of uncorrelated binomial fluctuations of the

FIG. 9. Cumulants of the charge inside a chaotic cavity,kkQt
nll, n=2,3,4 (in arbitrary units) as functions of the dimen-

sionless potential differenceDm /kBT. The parameterb=sGL−GRd / sGL+GRd characterizes the asymmetry of the cavity.
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Fermi occupations of each semi-classical state. We would like to mention that the same result can
be obtained by solving the stationary master equation.

VI. CONCLUSIONS

We have put forth a stochastic path integral formulation of fluctuation statistics in networks.
The mathematical building blocks of the theory are(1) the probability distributions of transport
processes through the connectors,(2) a continuity equation linking the connector currents to the
charge accumulation in nodes(charge conservation), and(3) a separation of time scales between
nodal dynamics and connector fluctuations. The relevant action of the path integral is derived from
these considerations and is related to the probability of(charge conserving) paths in phase space.
The dominant contribution to the statistics comes from the saddle point approximation to the path
integral, and the generating function for the interacting system is simply the action at the saddle
point. Fluctuations are suppressed by the number of transporting elementary charges in the net-
work. We have considered the continuum limit to obtain a field theory, and mapped it onto a
Langevin equation with Gaussian noise. Cascade diagrammatic rules were found in agreement
with Nagaev for the one node case, and extended to general current correlation functions in an
arbitrary network. Applications to the current statistics of the diffusive wire and fluctuation sta-
tistics of the charge inside a mesoscopic cavity were also discussed. As the building blocks of the
theory are classical probability theory, the potential application of this formalism is very broad and
applicable to any field where fluctuations are important, including mesoscopics, biology, econom-
ics, fluid and chemical dynamics.

Note added.After this paper was submitted for publication, the authors learned of previous
related work by Bertiniet al.57 Although they did not consider transport statistics, they did
consider the probability to manifest a given macroscopic fluctuation of the particle density in
diffusive lattice gas models and arrive at the action Eq.(33). However, the Gaussian nature of the
local fluctuations was assumeda priori. We thank B. Derrida for bringing these papers to our
attention.

ACKNOWLEDGMENTS

The authors thank M. Kindermann for helpful discussions, and M. Büttiker who collaborated
in the initial stages of this work. This work was supported by the Swiss National Science Foun-
dation, and by INTAS(project 0014, open call 2001).

1Ya. M. Blanter and M. Büttiker, Phys. Rep.336, 1 (2000).
2L. E. Reichl,A Modern Course in Statistical Physics, 2nd ed.(Wiley, New York, 1998).
3S. M. Bezrukov, A. M. Berezhkovskii, M. A. Pustovoit, and A. Szabo, J. Chem. Phys.113, 8206(2000).
4C. W. Gardiner,Handbook of Stochastic Methods(Springer-Verlag, Berlin, 1990).
5L. S. Levitov and G. B. Lesovik Pis’ma Zh. Eksp. Teor. Fiz.58, 225 (1993) [JETP Lett. 58, 230 (1993)].
6L. S. Levitov, H. Lee, and G. B. Lesovik, J. Math. Phys.37, 4845(1996).
7S. Pilgram, A. N. Jordan, E. V. Sukhorukov, and M. Büttiker, Phys. Rev. Lett.90, 206801(2003).
8H. Lee, L. S. Levitov, and A. Yu. Yakovets, Phys. Rev. B51, 4079(1995).
9B. A. Muzykantskii and D. E. Khmelnitskii, Phys. Rev. B50, 3982(1994).

10Yu. V. Nazarov, Ann. Phys.(Leipzig) 8, S1 (1999).
11W. Belzig and Yu. V. Nazarov, Phys. Rev. Lett.87, 067006(2001).
12Yu. V. Nazarov and D. A. Bagrets, Phys. Rev. Lett.88, 196801(2002).
13M. Kindermann, Yu. V. Nazarov, and C. W. J. Beenakker, Phys. Rev. B69, 035336(2004).
14D. G. Gutman, Y. Gefen, and A. D. Mirlin, inQuantum Noise(see Ref. 28); cond-mat/0210076.
15K. E. Nagaev, Phys. Lett. A169, 103 (1992).
16M. J. M. de Jong and C. W. J. Beenakker, inMesoscopic Electron Transport, edited by L. P. Kouwenhoven, G. Schön,

and L. L. Sohn, NATO ASI Series E, Vol. 345(Kluwer Academic, Dordrecht, 1996).
17S. A. van Langen and M. Büttiker, Phys. Rev. B56, R1680(1997).
18Ya. M. Blanter and E. V. Sukhorukov, Phys. Rev. Lett.84, 1280(2000).
19K. E. Nagaev, Phys. Rev. B66, 075334(2002).
20K. E. Nagaev, P. Samuelsson, and S. Pilgram, Phys. Rev. B66, 195318(2002).
21M. J. M. de Jong, Phys. Rev. B54, 8144(1996).
22B. Derrida, B. Douçot, and P.-E. Roche, cond-mat/0310453.
23P.-E. Roche, B. Derrida, and B. Douçot, cond-mat/0312659.

4416 J. Math. Phys., Vol. 45, No. 11, November 2004 Jordan, Sukhorukov, and Pilgram

Downloaded 10 Apr 2006 to 128.165.21.98. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



24M. Doi, J. Phys. A 9, 1465(1976); 9, 1479(1976); L. Peliti, J. Phys.(Paris) 46, 1469(1985).
25J. L. Cardy,Scaling and Renormalization in Statistical Physics(Cambridge University Press, Cambridge, 1996), Chap.

10; “Field theory and non-equilibrium statistical mechanics,” http://www-thphys.physics.ox.ac.uk/users/JohnCardy/
26A. Kamenev, cond-mat/0109316.
27Different species of charge may be taken into account by lettingQa be a vector of these different charge species on each

node.
28Quantum Noise in Mesoscopic Physics, Proceedings of NATO ARW, edited by Yu. V. Nazarov and Ya. M. Blanter

(Kluwer Academic Publishers, Delft, 2003).
29H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets, 3rd ed.(World

Scientific, Singapore, 2002).
30There may be cases where charges in a node are in fact correlated. This is not difficult to incorporate into the formalism,

it simply means that the Hamiltonian in the action Eq.(3b) will have a more complicated dependence on the counting
parametersla. For a physical example, see the discussion of the hot electron regime in Ref. 7.

31The ambiguity of at which point to update the generator is related to the difference between Ito(beginning) and
Stratronovich calculus(midpoint) (Ref. 58).

32J. Zinn-Justin,Quantum Field Theory and Critical Phenomena(Clarendon, Oxford, 1993).
33K. E. Nagaev, S. Pilgram, and M. Büttiker, Phys. Rev. Lett.92, 176804(2004).
34M. Lax, Rev. Mod. Phys.38, 359 (1966).
35S. Oberholzer, E. V. Sukhorukov, C. Strunk, C. Schönenberger, T. Heinzel, and M. Holland, Phys. Rev. Lett.86, 2114

(2001).
36S. Oberholzer, E. V. Sukhorukov, C. Strunk, and C. Schönenberger, Phys. Rev. B66, 233304(2002).
37Mathematically, this term is a vector, and because the action must be scalar in nature, it must be dotted into some natural

vector of the system. Physically, this simply states that at zero bias, there is no preferred current direction; the retention
of this term demands some broken symmetry in the problem

38The physical conductance is related to the generalized conductance discussed here through a capacitance.
39N. G. Van Kampen,Stochastic Processes in Physics and Chemistry(North-Holland, Amsterdam, 1981).
40L. D. Landau and E. M. Lifshitz,The Classical Theory of Fields(Pergamon, Oxford, 1962).
41Gaussian noise with nontrivial correlations in space and time may be included by introducing two time and space

integrals in the probability weight Eq.(41).
42In the process of converting the Langevin equation into the path integral, there is additionally a functional Jacobian

between¹n andr. This may be written as a determinant of an operatorM =fd/dt− ¹ ·sd /drsD¹rddgdst− t8ddsr −r 8d. If
D is independent ofr, this simply alters the overall normalization. If this is not the case, one may often use the freedom
of stochastic quantization to render it a constant(Ref. 29). To systemically investigate fluctuations, the determinant may
be written as a fermionic functional integral(Ref. 32)

43C. W. J. Beenakker, M. Kindermann, and Yu. V. Nazarov, Phys. Rev. Lett.90, 176802(2003).
44B. Reulet, J. Senzier, and D. E. Prober, Phys. Rev. Lett.91, 196601(2003).
45Ya. M. Blanter, H. Schomerus, and C. W. J. Beenakker, Physica E(Amsterdam) 11, 1 (2001).
46Similarly to the stationary case, the rules may be formulated with a trivial internal line, but the propagatorDabsvd

appears in the vertices.
47C. W. J. Beenakker and M. Büttiker, Phys. Rev. B46, 1889(1992).
48M. Henny, S. Oberholzer, C. Strunk, and C. Schönenberger, Phys. Rev. B59, 2871(1999).
49Yu. V. Nazarov, Phys. Rev. Lett.73, 134 (1994).
50E. V. Sukhorukov and D. Loss, Phys. Rev. Lett.80, 4959(1998); Phys. Rev. B59, 13 054(1999).
51If diffusion coefficientD and noise coefficientF do not explicitely depend on energy(which is usually the case for

metals), it can be shown that the electrostatic potential along the wire can be absorbed into the electron energy and does
not influence the action(82) in the zero frequency limit. Finite frequency effects due to fluctuations of the electrostatic
potential are discussed in Ref. 59.

52It is crucial for the universality of the statistics thatDsrd andFsrd multiply the same tensorT̂.
53This proof of the universality can be easily generalized to include the coordinate dependence ofD̂ and F̂, in the same

way as it has been done for the noise power in Ref. 50.
54R. A. Jalabert, J.-L. Pichard, and C. W. J. Beenakker, Europhys. Lett.27, 255 (1994).
55M. H. Pedersen, S. A. van Langen, and M. Büttiker, Phys. Rev. B57, 1838(1998).
56S. Pilgram and M. Büttiker, Phys. Rev. B67, 235308(2003).
57L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C. Landim, J. Stat. Phys.107, 635(2002); Phys. Rev. Lett.87,

040601(2001).
58H. Nakazato, K. Okano, L. Schülke, and Y. Yamanaka, Nucl. Phys. B346, 611 (1990).
59S. Pilgram, K. E. Nagaev, and M. Büttiker, Phys. Rev. B70, 045304(2004).

J. Math. Phys., Vol. 45, No. 11, November 2004 Fluctuation statistics in networks 4417

Downloaded 10 Apr 2006 to 128.165.21.98. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp


